

TRANSITION TO HVO ACROSS UK TRANSPORT FLEET

WHY HVO?

1. FROM A CARBON SAVING PERSPECTIVE
2. WHAT IS HVO?
3. OPERATIONS
4. HSSEQ
5. SUMMARY

FROM A CARBON EMISSIONS SAVING PERSPECTIVE

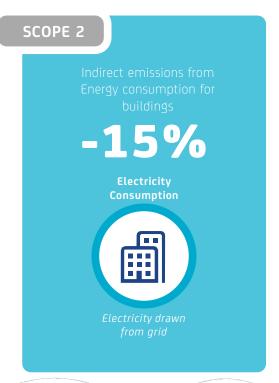
OUR COMMITMENTS TOWARDS THE ENVIRONMENT

PROTECTING THE PLANET

Net Zero Greenhouse Gas Emissions by 2040

Protect our natural resouces (water usage)

Zero Waste to Landfill



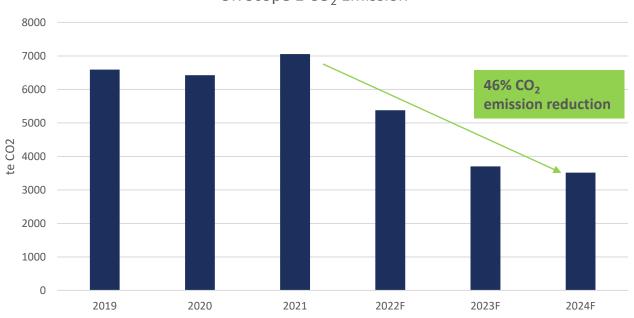
OUR GOALS AND OBJECTIVES FOR A CARBON NEUTRAL FUTURE

REDUCTION FROM 2019 TO 2024

CARBON EMISSIONS SAVING INITIATIVES

ASCO

TOWARDS A CARBON NEUTRAL FUTURE



2022 ENVIRONMENT SUSTAINABILITY PLAN

CO2 EMISSION REDUCTION

WHAT IS HVO?

BIOFUELS

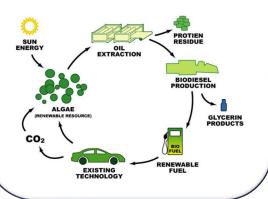
AN INTRODUCTION

Not all biofuels are created equally, typically they are categorized in to 3 'generations' which is based on the biomass source. Select the wrong biomass source and the result could be a biofuel with a carbon footprint worse than its fossil fuel counterpart

1st Generation

- Source: sugar, starch or vegetable oil i.e. biomass that is a food crop. Wheat, sugar and oil seed rape have been popular
- Processes: fermentation, distillation and transesterification
- Issues: fuel vs food, land in direct competition between crops for fuel or food

Conventional approaches Rape oil Transesterification vegetable oil esters or biodiesel Mix with gas oil Beet Sugarcane Corn Potatoes starche


2nd Generation

- Source: non-food crops i.e. wood, organic waste, food waste and specific biomass crops
- Processes: thermochemical or biochemical reactions to 'unlock' the sugar then fermentation or synthesis. HVO = hydrotreatment
- Issues: still some land competition as growth in the same climate as that for food. Potential to remove nutrients from the ground

3rd Generation

- Source: specifically engineered crops such as algae
- Processes: extraction of oil and then refined into fuel
- Issues: immature process, expensive, large space requirements for growth of algae

WHAT IS HVO?

HYDROTREATED VEGETABLE OIL

HVO stands for hydrotreated vegetable oil and is a paraffinic diesel fuel. Because it meets EN 15940 standards and Fuel Quality Directive 2009/30/EC Annex II, it can be used as a direct drop-in alternative for diesel with little or no modification needed to our engines.

HVO is stable, renewable, sustainable and high-quality, and therefore offers better combustion, filterability and cold temperature performance than fossil diesel, whilst significantly reducing greenhouse gas emissions on combustion.

CURRENT ALTERNATE FUEL OPTIONS

WHAT ELSE IS OUT THERE?

Electric Vehicle (EV), Hydrogen Vehicles (FCEV) & Renewable Diesel (HVO)

EV

FCEV

HVO

Pros	Cons	
Less maintenance requirements	Refuelling times can take hours	
Zero tail pipe emissions	Infrastructure required at operating bases	
Battery technology is becoming more reliable (8 years lifespan on avg)	Not strictly zero emissions (Only at point of use)	
Cheapest running costs (Both fuel and maintenance)	Adverse effect on payload, due to weight of batteries. No 44-tonne options available to buy at present (2023 forecast).	
	Vehicles cost substantially more than conventional.	
	Shortest range from full charge/tank	

Pros	Cons	
Greenest fuel source (dependant on type of hydrogen)	Highest cost vehicles (Based on current prices)	
Short fuelling time (9 mins approx.)	Lack of infrastructure universally	
Medium to long range capability	Technology not mature. First HGV trials, in the UK, began in August 2021.	
The only by-product from the tailpipe is o2.	Hydrogen production may not be eco-friendly	
	High fuel cost	

Pros	Cons
Reduces tail pipe emissions by up to 90%	More expensive running cost (around 0.08ppl more than diesel)
Drop-in fuel, no infrastructure or asset changes required	Surge in demand from other markets may affect price & supply
Long shelf life, can be stored in bulk tanks for longer	
Fastest fuelling time (5 mins approx.)	
Availability to reduce carbon output immediately (Ready to go now)	

WHY HVO?

Be a step ahead of the competitor

A huge step towards our 2024 sustainability goals Compatible with 89% of our current HGV fleet

Ready to go now.

No alterations

required

The most carbon friendly alternative to fossil diesel, at this current point in time

While EV and FCEV vehicles give zero tailpipe emissions, this doesn't account for the Co2 emitted when charging a vehicle using the UK's electricity grid, which is made up of power from a mixture of primarily gas, some coal, nuclear and renewable energy too. In reality, when considering the CO2 emissions released from the electricity grid to charge the EV battery, an all-battery EV emits 51 grammes of CO2 per mile travelled – this is of course better than a fossil diesel vehicle, but still notable. By contrast, a similar vehicle running on HVO emits just 3.6 grammes of CO2 per mile. (Crown oil, 2021)

Paramete r	Forecourt diesel (B7)	EV	HVO
Grammes of CO ₂ per mile	251.7	51.4	3.6

HVO TRIALS

CO2 SAVING AND TRIAL OVERVIEW

A fuel switch to HVO represents a significant emissions reduction for Asco

	Unit	Diesel	HVO
Volume	Litres	1139043.82	1200000.00
Emission Factor	kgCO2e/litre	2.71	0.04
NCV	kWh/litre	10.04	9.53
Energy	kWh	11436000.00	11436000.00
Total CO2e	Tonnes	3081.72	42.70
		CO2e Saving	3039.02

Trial Overview

- Trial carried out in May / June 2021 Renault Truck
- which is successful showing non adverse affects on operational performance
- Journeys typically between Peterhead and Aberdeen
- Up to a 98.6% reduction in CO2e, per vehicle transitioned to HVO
- Another successful trial completed in Feb. 2022 on forklift truck
- Next step: engage with crane OEM to switch to HVO

Renault Truck

- Manufacturer: Renault
- Model: T460 6x2
- Year: 2018
- Warranty for use of HVO
- Euro 6 Step C
- Fuel Type: Diesel
- Gross Vehicle Weight 44 tonnes

OPERATIONS

IMPLEMENTATION TIMELINE

WHEN IS THIS HAPPENING AND WHAT DOES IT MEAN FOR YOU?

When is this happening?

- → March 2022 Peterhead / South Base DERV tank to be reallocated for HVO use
- → April/May 2022 GY DERV tank to be reallocated for HVO use
- → Date TBC New tank to be located in Aberdeen, to allow for internal fuelling of HVO, site TBC

What this means for you...

- → If your truck is fitted with a "HVO" sticker (details on next slide) you will continue to fuel internally, as much as possible. External fuelling can still be used where necessary (long distance trips etc.)
- → If your truck is fitted with a "Diesel" sticker (details on next slide) you will only fuel your vehicle at external fuelling stations, using the vehicles allocated fuel card

VEHICLES IMPACTED

89% of Heavy good vehicle will transition over to HVO.

To help you to identify which vehicles are impacted by this change, the following stickers will be placed on each vehicle:

Fuel internally, however, can still fuel with diesel if far from the base

Fuel at the pump externally, with your fuel card.

Do not use the internal tank

HSSEQ

HVO VS DIESEL

SOME ADDITIONAL SAFETY BENEFITS AND RISK REDUCTION FROM SWITCHING TO HVO

- Significant reduction in risk to the environment, not just from emissions but also as a result of accidental release
- HVO has a very low toxicity to Aquatic Life, whereas regular Diesel is toxic to Aquatic Life with long-lasting effects
- Significant reduction in harmful effects related to exposure very low toxicity, not classified as an irritant or skin sensitiser

Extracts from Safety Data Sheets:

Hazard Statements associated with regular Diesel Fuel:

DANGER

H227 - Combustible liquid.

H332 - Harmful if inhaled. H315 - Causes skin irritation.

H351 - Suspected of causing cancer.

H304 - May be fatal if swallowed and enters airways.

H373 - May cause damage to organs through prolonged or repeated exposure. (bone marrow, liver, thymus)

Danger

H304: May be fatal if swallowed and enters airways.

Hazard Statements associated with HVO:

EUH066 Repeated exposure may cause skin dryness or cracking.

SUMMARY

SUMMARY

LOWER CO, LEVELS

HVO REDUCES CO2 BY UP TO 90%

GREENHOUSE GASES
BY UP TO 90%

NOX NITROGEN OXIDE BY UP TO 30% **SUSTAINABLE SUPPLY**

ALL YEAR ROUND PERFORMANCE

BIODEGRADABLE AND NON TOXIC

GREAT ALTERNATIVE TO DIESEL

CLEANER BURN

PART OF THE SCAP

SAVING

3040

TONNES OF CO₂
EVERY YEAR

Switch to HVO: W/C 14/03 2022

20

THANK YOU

ANY QUESTIONS